JSCC/channel.py
2024-06-04 11:19:08 +08:00

46 lines
1.5 KiB
Python

import torch
import torch.nn as nn
class Channel(nn.Module):
def __init__(self, channel_type='AWGN', snr=20):
if channel_type not in ['AWGN', 'Rayleigh']:
raise Exception('Unknown type of channel')
super(Channel, self).__init__()
self.channel_type = channel_type
self.snr = snr
def forward(self, z_hat):
if z_hat.dim() == 4:
# k = np.prod(z_hat.size()[1:])
k = torch.prod(torch.tensor(z_hat.size()[1:]))
sig_pwr = torch.sum(torch.abs(z_hat).square(), dim=(1, 2, 3), keepdim=True) / k
elif z_hat.dim() == 3:
# k = np.prod(z_hat.size())
k = torch.prod(torch.tensor(z_hat.size()))
sig_pwr = torch.sum(torch.abs(z_hat).square()) / k
noi_pwr = sig_pwr / (10 ** (self.snr / 10))
noise = torch.randn_like(z_hat) * torch.sqrt(noi_pwr)
if self.channel_type == 'Rayleigh':
# hc = torch.randn_like(z_hat) wrong implement before
hc = torch.randn(1, device = z_hat.device)
z_hat = hc * z_hat
return z_hat + noise
def get_channel(self):
return self.channel_type, self.snr
if __name__ == '__main__':
# test
channel = Channel(channel_type='AWGN', snr=10)
z_hat = torch.randn(64, 10, 5, 5)
z_hat = channel(z_hat)
print(z_hat)
channel = Channel(channel_type='Rayleigh', snr=10)
z_hat = torch.randn(64, 10, 5, 5)
z_hat = channel(z_hat)
print(z_hat)