| demo | ||
| .gitignore | ||
| best_number_workers.py | ||
| channel.py | ||
| eval.py | ||
| model.py | ||
| README.md | ||
| requirements.txt | ||
| train.py | ||
| utils.py | ||
Deep JSCC
This implements training of deep JSCC models for wireless image transmission as described in the paper Deep Joint Source-Channel Coding for Wireless Image Transmission by Pytorch. And there has been a Tensorflow and keras implementations .
This is my first time to use PyTorch and git to reproduce a paper, so there may be some mistakes. If you find any, please let me know. Thanks!
Architecture
Demo
Installation
conda or other virtual environment is recommended.
git clone https://github.com/chunbaobao/Deep-JSCC-PyTorch.git
pip install requirements.txt
Usage
Training Model
Run(example presented in paper)
cd ./Deep-JSCC-PyTorch
python train.py --lr 10e-4 --epochs 100 --batch_size 32 --channel 'AWGN' --saved ./saved --snr_list 1 4 7 13 19 --ratio_list 1/6 1/12 --dataset imagenet
or
python train.py --lr 10e-3 --epochs 100 --batch_size 512 --channel 'AWGN' --saved ./saved --dataset cifar10 --num_workers 4 --parallel True
Evaluation
Run(example presented in paper)
python eval.py --channel 'AWGN' --saved ./saved/${mode_path} --snr 20 --ratio_list 1/3 --test_img ./test_image ./demo/kodim08.png
Citation
If you find (part of) this code useful for your research, please consider citing
@misc{chunhang_Deep-JSCC,
author = {chunhang},
title = {a pytorch implementation of Deep JSCC},
url ={https://github.com/chunbaobao/Deep-JSCC-PyTorch},
year = {2023}
}
