106 lines
4.3 KiB
Python
106 lines
4.3 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Tue Dec 17:00:00 2023
|
|
|
|
@author: chun
|
|
"""
|
|
import os
|
|
import torch
|
|
import torch.nn as nn
|
|
from torchvision import transforms
|
|
from torchvision import datasets
|
|
from torch.utils.data import DataLoader, RandomSampler
|
|
import torch.optim as optim
|
|
from tqdm import tqdm
|
|
from model import DeepJSCC, ratio2filtersize
|
|
from torch.nn.parallel import DataParallel
|
|
|
|
|
|
def config_parser():
|
|
import argparse
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--seed', default=2048, type=int, help='Random seed')
|
|
parser.add_argument('--lr', default=1e-3, type=float, help='learning rate')
|
|
parser.add_argument('--epochs', default=100, type=int, help='number of epochs')
|
|
parser.add_argument('--batch_size', default=256, type=int, help='batch size')
|
|
parser.add_argument('--weight_decay', default=5e-4, type=float, help='weight decay')
|
|
parser.add_argument('--channel', default='AWGN', type=str, help='channel type')
|
|
parser.add_argument('--saved', default='./saved', type=str, help='saved_path')
|
|
parser.add_argument('--snr_list', default=range(1, 19, 3), type=list, help='snr_list')
|
|
parser.add_argument('--ratio_list', default=[1/3, 1/6, 1/12], type=list, help='ratio_list')
|
|
parser.add_argument('--num_workers', default=0, type=int, help='num_workers')
|
|
parser.add_argument('--dataset', default='imagenet', type=str, help='dataset')
|
|
return parser.parse_args()
|
|
|
|
|
|
def main():
|
|
args = config_parser()
|
|
|
|
print("Training Start")
|
|
for ratio in args.ratio_list:
|
|
for snr in args.snr_list:
|
|
train(args, ratio, snr)
|
|
|
|
|
|
def train(args: config_parser(), ratio: float, snr: float):
|
|
|
|
device = torch.device('cuda')
|
|
# load data
|
|
if args.dataset == 'cifar10':
|
|
transform = transforms.Compose([transforms.ToTensor(), ])
|
|
train_dataset = datasets.CIFAR10(root='./Dataset/', train=True,
|
|
download=True, transform=transform)
|
|
|
|
train_loader = DataLoader(train_dataset, shuffle=True,
|
|
batch_size=args.batch_size, num_workers=args.num_workers)
|
|
test_dataset = datasets.CIFAR10(root='./Dataset/', train=False,
|
|
download=True, transform=transform)
|
|
test_loader = RandomSampler(test_dataset, replacement=True, num_samples=args.batch_size)
|
|
elif args.dataset == 'imagenet':
|
|
transform = transforms.Compose([transforms.ToTensor(), ])
|
|
train_dataset = datasets.ImageNet(root='./Dataset/', train=True,
|
|
download=True, transform=transform)
|
|
|
|
train_loader = DataLoader(train_dataset, shuffle=True,
|
|
batch_size=args.batch_size, num_workers=args.num_workers)
|
|
test_dataset = datasets.ImageNet(root='./Dataset/', train=False,
|
|
download=True, transform=transform)
|
|
test_loader = RandomSampler(test_dataset, replacement=True, num_samples=args.batch_size)
|
|
else:
|
|
raise Exception('Unknown dataset')
|
|
|
|
print("training with ratio: {:2f}, snr_db: {}, channel: {}".format(ratio, snr, args.channel))
|
|
|
|
image_fisrt = train_dataset.__getitem__(0)[0]
|
|
c = ratio2filtersize(image_fisrt, ratio)
|
|
model = DeepJSCC(c=c, channel_type=args.channel, snr=snr).cuda(device=device)
|
|
|
|
criterion = nn.MSELoss(reduction='sum').cuda(device=device)
|
|
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
|
|
epoch_loop = tqdm(range(args.epochs), total=args.epochs, leave=False)
|
|
|
|
for epoch in epoch_loop:
|
|
run_loss = 0.0
|
|
for images, _ in tqdm((train_loader), leave=False):
|
|
optimizer.zero_grad()
|
|
images = images.cuda(device=device)
|
|
outputs = model(images)
|
|
loss = criterion(outputs, images) / args.batch_size
|
|
loss.backward()
|
|
optimizer.step()
|
|
run_loss += loss.item()
|
|
|
|
epoch_loop.set_description(f'Epoch [{epoch}/{args.epochs}]')
|
|
epoch_loop.set_postfix(loss=run_loss/len(train_loader))
|
|
save_model(model, args.saved + '/model{}_{:2f}_{:2f}.pth'.format(args.dataset, ratio, snr))
|
|
|
|
|
|
def save_model(model, path):
|
|
os.makedirs(path, exist_ok=True)
|
|
torch.save(model, path)
|
|
print("Model saved in {}".format(path))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|