JSCC/train.py
2024-06-04 11:19:08 +08:00

431 lines
18 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Tue Dec 17:00:00 2023
@author: chun
"""
import os
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.optim as optim
from tqdm import tqdm
from model import DeepJSCC, ratio2filtersize
from torch.nn.parallel import DataParallel
from utils import image_normalization, set_seed, save_model, view_model_param
from fractions import Fraction
from dataset import Vanilla
import numpy as np
import time
from tensorboardX import SummaryWriter
import glob
def train_epoch(model, optimizer, param, data_loader):
model.train()
epoch_loss = 0
for iter, (images, _) in enumerate(data_loader):
images = images.cuda() if param['parallel'] and torch.cuda.device_count(
) > 1 else images.to(param['device'])
optimizer.zero_grad()
outputs = model.forward(images)
outputs = image_normalization('denormalization')(outputs)
images = image_normalization('denormalization')(images)
loss = model.loss(images, outputs) if not param['parallel'] else model.module.loss(
images, outputs)
loss.backward()
optimizer.step()
epoch_loss += loss.detach().item()
epoch_loss /= (iter + 1)
return epoch_loss, optimizer
def evaluate_epoch(model, param, data_loader):
model.eval()
epoch_loss = 0
with torch.no_grad():
for iter, (images, _) in enumerate(data_loader):
images = images.cuda() if param['parallel'] and torch.cuda.device_count(
) > 1 else images.to(param['device'])
outputs = model.forward(images)
outputs = image_normalization('denormalization')(outputs)
images = image_normalization('denormalization')(images)
loss = model.loss(images, outputs) if not param['parallel'] else model.module.loss(
images, outputs)
epoch_loss += loss.detach().item()
epoch_loss /= (iter + 1)
return epoch_loss
def config_parser_pipeline():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='cifar10', type=str,
choices=['cifar10', 'imagenet'], help='dataset')
parser.add_argument('--out', default='./out', type=str, help='out_path')
parser.add_argument('--disable_tqdm', default=False, type=bool, help='disable_tqdm')
parser.add_argument('--device', default='cuda:0', type=str, help='device')
parser.add_argument('--parallel', default=False, type=bool, help='parallel')
parser.add_argument('--snr_list', default=['19', '13',
'7', '4', '1'], nargs='+', help='snr_list')
parser.add_argument('--ratio_list', default=['1/6', '1/12'], nargs='+', help='ratio_list')
parser.add_argument('--channel', default='AWGN', type=str,
choices=['AWGN', 'Rayleigh'], help='channel')
return parser.parse_args()
def main_pipeline():
args = config_parser_pipeline()
print("Training Start")
dataset_name = args.dataset
out_dir = args.out
args.snr_list = list(map(float, args.snr_list))
args.ratio_list = list(map(lambda x: float(Fraction(x)), args.ratio_list))
params = {}
params['disable_tqdm'] = args.disable_tqdm
params['dataset'] = dataset_name
params['out_dir'] = out_dir
params['device'] = args.device
params['snr_list'] = args.snr_list
params['ratio_list'] = args.ratio_list
params['channel'] = args.channel
if dataset_name == 'cifar10':
params['batch_size'] = 64 # 1024
params['num_workers'] = 4
params['epochs'] = 1000
params['init_lr'] = 1e-3 # 1e-2
params['weight_decay'] = 5e-4
params['parallel'] = False
params['if_scheduler'] = True
params['step_size'] = 640
params['gamma'] = 0.1
params['seed'] = 42
params['ReduceLROnPlateau'] = False
params['lr_reduce_factor'] = 0.5
params['lr_schedule_patience'] = 15
params['max_time'] = 12
params['min_lr'] = 1e-5
elif dataset_name == 'imagenet':
params['batch_size'] = 32
params['num_workers'] = 4
params['epochs'] = 300
params['init_lr'] = 1e-4
params['weight_decay'] = 5e-4
params['parallel'] = True
params['if_scheduler'] = True
params['gamma'] = 0.1
params['seed'] = 42
params['ReduceLROnPlateau'] = True
params['lr_reduce_factor'] = 0.5
params['lr_schedule_patience'] = 15
params['max_time'] = 12
params['min_lr'] = 1e-5
else:
raise Exception('Unknown dataset')
set_seed(params['seed'])
for ratio in params['ratio_list']:
for snr in params['snr_list']:
params['ratio'] = ratio
params['snr'] = snr
train_pipeline(params)
# add train_pipeline to with only dataset_name args
def train_pipeline(params):
dataset_name = params['dataset']
# load data
if dataset_name == 'cifar10':
transform = transforms.Compose([transforms.ToTensor(), ])
train_dataset = datasets.CIFAR10(root='../dataset/', train=True,
download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True,
batch_size=params['batch_size'], num_workers=params['num_workers'])
test_dataset = datasets.CIFAR10(root='../dataset/', train=False,
download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=True,
batch_size=params['batch_size'], num_workers=params['num_workers'])
elif dataset_name == 'imagenet':
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Resize((128, 128))]) # the size of paper is 128
print("loading data of imagenet")
train_dataset = datasets.ImageFolder(root='../dataset/ImageNet/train', transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True,
batch_size=params['batch_size'], num_workers=params['num_workers'])
test_dataset = Vanilla(root='../dataset/ImageNet/val', transform=transform)
test_loader = DataLoader(test_dataset, shuffle=True,
batch_size=params['batch_size'], num_workers=params['num_workers'])
else:
raise Exception('Unknown dataset')
# create model
image_fisrt = train_dataset.__getitem__(0)[0]
c = ratio2filtersize(image_fisrt, params['ratio'])
print("The snr is {}, the inner channel is {}, the ratio is {:.2f}".format(
params['snr'], c, params['ratio']))
model = DeepJSCC(c=c, channel_type=params['channel'], snr=params['snr'])
# init exp dir
out_dir = params['out_dir']
phaser = dataset_name.upper() + '_' + str(c) + '_' + str(params['snr']) + '_' + \
"{:.2f}".format(params['ratio']) + '_' + str(params['channel']) + \
'_' + time.strftime('%Hh%Mm%Ss_on_%b_%d_%Y')
root_log_dir = out_dir + '/' + 'logs/' + phaser
root_ckpt_dir = out_dir + '/' + 'checkpoints/' + phaser
root_config_dir = out_dir + '/' + 'configs/' + phaser
writer = SummaryWriter(log_dir=root_log_dir)
# model init
device = torch.device(params['device'] if torch.cuda.is_available() else 'cpu')
if params['parallel'] and torch.cuda.device_count() > 1:
model = DataParallel(model, device_ids=list(range(torch.cuda.device_count())))
model = model.cuda()
else:
model = model.to(device)
# opt
optimizer = optim.Adam(
model.parameters(), lr=params['init_lr'], weight_decay=params['weight_decay'])
if params['if_scheduler'] and not params['ReduceLROnPlateau']:
scheduler = optim.lr_scheduler.StepLR(
optimizer, step_size=params['step_size'], gamma=params['gamma'])
elif params['ReduceLROnPlateau']:
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min',
factor=params['lr_reduce_factor'],
patience=params['lr_schedule_patience'],
verbose=False)
else:
print("No scheduler")
scheduler = None
writer.add_text('config', str(params))
t0 = time.time()
epoch_train_losses, epoch_val_losses = [], []
per_epoch_time = []
# train
# At any point you can hit Ctrl + C to break out of training early.
try:
with tqdm(range(params['epochs']), disable=params['disable_tqdm']) as t:
for epoch in t:
t.set_description('Epoch %d' % epoch)
start = time.time()
epoch_train_loss, optimizer = train_epoch(
model, optimizer, params, train_loader)
epoch_val_loss = evaluate_epoch(model, params, test_loader)
epoch_train_losses.append(epoch_train_loss)
epoch_val_losses.append(epoch_val_loss)
writer.add_scalar('train/_loss', epoch_train_loss, epoch)
writer.add_scalar('val/_loss', epoch_val_loss, epoch)
writer.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], epoch)
t.set_postfix(time=time.time() - start, lr=optimizer.param_groups[0]['lr'],
train_loss=epoch_train_loss, val_loss=epoch_val_loss)
per_epoch_time.append(time.time() - start)
# Saving checkpoint
if not os.path.exists(root_ckpt_dir):
os.makedirs(root_ckpt_dir)
torch.save(model.state_dict(), '{}.pkl'.format(
root_ckpt_dir + "/epoch_" + str(epoch)))
files = glob.glob(root_ckpt_dir + '/*.pkl')
for file in files:
epoch_nb = file.split('_')[-1]
epoch_nb = int(epoch_nb.split('.')[0])
if epoch_nb < epoch - 1:
os.remove(file)
if params['ReduceLROnPlateau'] and scheduler is not None:
scheduler.step(epoch_val_loss)
elif params['if_scheduler'] and not params['ReduceLROnPlateau']:
scheduler.step() # use only information from the validation loss
if optimizer.param_groups[0]['lr'] < params['min_lr']:
print("\n!! LR EQUAL TO MIN LR SET.")
break
# Stop training after params['max_time'] hours
if time.time() - t0 > params['max_time'] * 3600:
print('-' * 89)
print("Max_time for training elapsed {:.2f} hours, so stopping".format(
params['max_time']))
break
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early because of KeyboardInterrupt')
test_loss = evaluate_epoch(model, params, test_loader)
train_loss = evaluate_epoch(model, params, train_loader)
print("Test Accuracy: {:.4f}".format(test_loss))
print("Train Accuracy: {:.4f}".format(train_loss))
print("Convergence Time (Epochs): {:.4f}".format(epoch))
print("TOTAL TIME TAKEN: {:.4f}s".format(time.time() - t0))
print("AVG TIME PER EPOCH: {:.4f}s".format(np.mean(per_epoch_time)))
"""
Write the results in out_dir/results folder
"""
writer.add_text(tag='result', text_string="""Dataset: {}\nparams={}\n\nTotal Parameters: {}\n\n
FINAL RESULTS\nTEST Loss: {:.4f}\nTRAIN Loss: {:.4f}\n\n
Convergence Time (Epochs): {:.4f}\nTotal Time Taken: {:.4f} hrs\nAverage Time Per Epoch: {:.4f} s\n\n\n"""
.format(dataset_name, params, view_model_param(model), np.mean(np.array(train_loss)),
np.mean(np.array(test_loss)), epoch, (time.time() - t0) / 3600, np.mean(per_epoch_time)))
writer.close()
if not os.path.exists(os.path.dirname(root_config_dir)):
os.makedirs(os.path.dirname(root_config_dir))
with open(root_config_dir + '.yaml', 'w') as f:
dict_yaml = {'dataset_name': dataset_name, 'params': params,
'inner_channel': c, 'total_parameters': view_model_param(model)}
import yaml
yaml.dump(dict_yaml, f)
del model, optimizer, scheduler, train_loader, test_loader
del writer
def train(args, ratio: float, snr: float): # deprecated
device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
# load data
if args.dataset == 'cifar10':
transform = transforms.Compose([transforms.ToTensor(), ])
train_dataset = datasets.CIFAR10(root='../dataset/', train=True,
download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True,
batch_size=args.batch_size, num_workers=args.num_workers)
test_dataset = datasets.CIFAR10(root='../dataset/', train=False,
download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=True,
batch_size=args.batch_size, num_workers=args.num_workers)
elif args.dataset == 'imagenet':
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Resize((128, 128))]) # the size of paper is 128
print("loading data of imagenet")
train_dataset = datasets.ImageFolder(root='./dataset/ImageNet/train', transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True,
batch_size=args.batch_size, num_workers=args.num_workers)
test_dataset = Vanilla(root='./dataset/ImageNet/val', transform=transform)
test_loader = DataLoader(test_dataset, shuffle=True,
batch_size=args.batch_size, num_workers=args.num_workers)
else:
raise Exception('Unknown dataset')
print(args)
image_fisrt = train_dataset.__getitem__(0)[0]
c = ratio2filtersize(image_fisrt, ratio)
print("the inner channel is {}".format(c))
model = DeepJSCC(c=c, channel_type=args.channel, snr=snr)
if args.parallel and torch.cuda.device_count() > 1:
model = DataParallel(model, device_ids=list(range(torch.cuda.device_count())))
model = model.cuda()
criterion = nn.MSELoss(reduction='mean').cuda()
else:
model = model.to(device)
criterion = nn.MSELoss(reduction='mean').to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
if args.if_scheduler:
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
epoch_loop = tqdm(range(args.epochs), total=args.epochs, leave=True, disable=args.disable_tqdm)
for epoch in epoch_loop:
run_loss = 0.0
for images, _ in tqdm((train_loader), leave=False, disable=args.disable_tqdm):
optimizer.zero_grad()
images = images.cuda() if args.parallel and torch.cuda.device_count() > 1 else images.to(device)
outputs = model(images)
outputs = image_normalization('denormalization')(outputs)
images = image_normalization('denormalization')(images)
loss = criterion(outputs, images)
loss.backward()
optimizer.step()
run_loss += loss.item()
if args.if_scheduler: # the scheduler is wrong before
scheduler.step()
with torch.no_grad():
model.eval()
test_mse = 0.0
for images, _ in tqdm((test_loader), leave=False, disable=args.disable_tqdm):
images = images.cuda() if args.parallel and torch.cuda.device_count() > 1 else images.to(device)
outputs = model(images)
images = image_normalization('denormalization')(images)
outputs = image_normalization('denormalization')(outputs)
loss = criterion(outputs, images)
test_mse += loss.item()
model.train()
# epoch_loop.set_postfix(loss=run_loss/len(train_loader), test_mse=test_mse/len(test_loader))
print("epoch: {}, loss: {:.4f}, test_mse: {:.4f}, lr:{}".format(
epoch, run_loss / len(train_loader), test_mse / len(test_loader), optimizer.param_groups[0]['lr']))
save_model(model, args.saved, args.saved + '/{}_{}_{:.2f}_{:.2f}_{}_{}.pth'
.format(args.dataset, args.epochs, ratio, snr, args.batch_size, c))
def config_parser(): # deprecated
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--seed', default=2048, type=int, help='Random seed')
parser.add_argument('--lr', default=1e-3, type=float, help='learning rate')
parser.add_argument('--epochs', default=256, type=int, help='number of epochs')
parser.add_argument('--batch_size', default=256, type=int, help='batch size')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='weight decay')
parser.add_argument('--channel', default='AWGN', type=str,
choices=['AWGN', 'Rayleigh'], help='channel type')
parser.add_argument('--saved', default='./saved', type=str, help='saved_path')
parser.add_argument('--snr_list', default=['19', '13',
'7', '4', '1'], nargs='+', help='snr_list')
parser.add_argument('--ratio_list', default=['1/3',
'1/6', '1/12'], nargs='+', help='ratio_list')
parser.add_argument('--num_workers', default=0, type=int, help='num_workers')
parser.add_argument('--dataset', default='cifar10', type=str,
choices=['cifar10', 'imagenet'], help='dataset')
parser.add_argument('--parallel', default=False, type=bool, help='parallel')
parser.add_argument('--if_scheduler', default=False, type=bool, help='if_scheduler')
parser.add_argument('--step_size', default=640, type=int, help='scheduler')
parser.add_argument('--device', default='cuda:0', type=str, help='device')
parser.add_argument('--gamma', default=0.5, type=float, help='gamma')
parser.add_argument('--disable_tqdm', default=True, type=bool, help='disable_tqdm')
return parser.parse_args()
def main(): # deprecated
args = config_parser()
args.snr_list = list(map(float, args.snr_list))
args.ratio_list = list(map(lambda x: float(Fraction(x)), args.ratio_list))
set_seed(args.seed)
print("Training Start")
for ratio in args.ratio_list:
for snr in args.snr_list:
train(args, ratio, snr)
if __name__ == '__main__':
main_pipeline()
# main()