add model

This commit is contained in:
chun 2023-12-27 19:38:27 +08:00
parent cc27436535
commit e2ed46499e
19 changed files with 35 additions and 15 deletions

2
.vscode/launch.json vendored
View File

@ -19,7 +19,7 @@
"--batch_size",
"512",
"--if_scheduler",
"False",
"1",
"--step_size",
"500",
"--dataset",

BIN
demo/127_127.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

BIN
demo/32_32.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 KiB

View File

@ -34,14 +34,15 @@ def main():
model.change_channel(args.channel, args.snr)
psnr_all = 0.0
demo_image = model(test_image)
demo_image = image_normalization('denormalization')(demo_image)
gt = image_normalization('denormalization')(test_image)
for i in range(args.times):
demo_image = model(test_image)
demo_image = image_normalization('denormalization')(demo_image)
gt = image_normalization('denormalization')(test_image)
psnr_all += get_psnr(demo_image, gt)
demo_image = image_normalization('normalization')(demo_image)
demo_image = torch.cat([test_image, demo_image], dim=1)
demo_image = transforms.ToPILImage()(demo_image)
temp = args.saved.split('/')[-1]
demo_image.save('./run/{}_{}'.format(args.saved.split('/')[-1],args.test_image.split('/')[-1]))
print("psnr on {} is {}".format(args.test_image, psnr_all / args.times))

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.6 MiB

After

Width:  |  Height:  |  Size: 1.4 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.4 MiB

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.0 MiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -17,6 +17,15 @@ from torch.nn.parallel import DataParallel
from utils import image_normalization
from fractions import Fraction
from dataset import Vanilla
import numpy as np
def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def config_parser():
@ -41,13 +50,17 @@ def config_parser():
parser.add_argument('--if_scheduler', default=False, type=bool, help='if_scheduler')
parser.add_argument('--step_size', default=640, type=int, help='scheduler')
parser.add_argument('--device', default='cuda:0', type=str, help='device')
parser.add_argument('--gamma', default=0.5, type=float, help='gamma')
parser.add_argument('--disable_tqdm', default=True, type=bool, help='disable_tqdm')
return parser.parse_args()
def main():
args = config_parser()
args.snr_list = list(map(float, args.snr_list))
args.ratio_list = list(map(lambda x: float(Fraction(x)), args.ratio_list))
set_seed(args.seed)
print("Training Start")
for ratio in args.ratio_list:
for snr in args.snr_list:
@ -81,9 +94,8 @@ def train(args: config_parser(), ratio: float, snr: float):
batch_size=args.batch_size, num_workers=args.num_workers)
else:
raise Exception('Unknown dataset')
print("training with ratio: {:.2f}, snr_db: {}, channel: {}".format(ratio, snr, args.channel))
print(args)
image_fisrt = train_dataset.__getitem__(0)[0]
c = ratio2filtersize(image_fisrt, ratio)
print("the inner channel is {}".format(c))
@ -98,12 +110,12 @@ def train(args: config_parser(), ratio: float, snr: float):
criterion = nn.MSELoss(reduction='mean').to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
if args.if_scheduler:
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=0.5)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
epoch_loop = tqdm(range(args.epochs), total=args.epochs, leave=True)
epoch_loop = tqdm(range(args.epochs), total=args.epochs, leave=True, disable=args.disable_tqdm)
for epoch in epoch_loop:
run_loss = 0.0
for images, _ in tqdm((train_loader), leave=False):
for images, _ in tqdm((train_loader), leave=False, disable=args.disable_tqdm):
optimizer.zero_grad()
images = images.cuda() if args.parallel else images.to(device)
outputs = model(images)
@ -118,7 +130,7 @@ def train(args: config_parser(), ratio: float, snr: float):
with torch.no_grad():
model.eval()
test_mse = 0.0
for images, _ in tqdm((test_loader), leave=False):
for images, _ in tqdm((test_loader), leave=False, disable=args.disable_tqdm):
images = images if args.parallel else images.to(device)
outputs = model(images)
images = image_normalization('denormalization')(images)
@ -126,15 +138,22 @@ def train(args: config_parser(), ratio: float, snr: float):
loss = criterion(outputs, images)
test_mse += loss.item()
model.train()
epoch_loop.set_postfix(loss=run_loss/len(train_loader), test_mse=test_mse/len(test_loader))
print("epoch: {}, loss: {:.4f}, test_mse: {:.4f} lr:{}".format(
# epoch_loop.set_postfix(loss=run_loss/len(train_loader), test_mse=test_mse/len(test_loader))
print("epoch: {}, loss: {:.4f}, test_mse: {:.4f}, lr:{}".format(
epoch, run_loss/len(train_loader), test_mse/len(test_loader), optimizer.param_groups[0]['lr']))
save_model(model, args.saved, args.saved +
'/{}_{}_{:.2f}_{:.2f}_{}.pth'.format(args.dataset, args.epochs, ratio, snr, c))
'/{}_{}_{:.2f}_{:.2f}_{}_{}.pth'.format(args.dataset, args.epochs, ratio, snr, args.batch_size,c))
def save_model(model, dir, path):
os.makedirs(dir, exist_ok=True)
flag = 1
while True:
if os.path.exists(path):
path = path+'_'+str(flag)
flag += 1
else:
break
torch.save(model.state_dict(), path)
print("Model saved in {}".format(path))